

PLAQUES ET GRANULÉS EXPANSE PUR

Les plaques en liège expansé sont réalisées à partir de granulés de liège pur moulus. Les granulés de liège pur sont un produit 100% naturel provenant de l'écorce du chêne liège. L'écorçage du chêne liège s'effectue tous les 9 ans et n'a pas d'effets nocifs pour l'arbre.

Ces granulés sont expansés dans un autoclave sous pression et à température élevée (360°C). L'expansion se produit moyennant de la vapeur et est appelée le procédé "steambaked". Sous l'effet de la chaleur, les cellules de liège gonflent et deviennent plus foncées. Les résines naturelles (subérine) s'agglomèrent en blocs sous l'effet de la chaleur dégagée. Ensuite, ces blocs de liège expansé sont débités en des épaisseurs différentes ou à nouveau moulus en granulés de liège.

Pendant le 'procédé steambaked', aucune substance étrangère n'est ajoutée aux granulés de liège. En d'autres termes, le procédé commence et se termine par un produit 100% naturel.

Les plaques de liège et les granulés de liège s'utilisent aussi bien comme isolation thermique qu'isolation acoustique, ils sont hydrofuges et ne sont pas rongés par les souris ou les termites.

La valeur d'isolation thermique d'un produit déterminé est exprimée en λ (lambda). Cette valeur exprime la quantité d'énergie qui passe par une surface de 1 m² pour une épaisseur de 1 mètre, par degré (Celsius ou Kelvin) d'écart de température entre les deux faces de la surface. Cette valeur est une propriété du matériau: plus la valeur est faible, plus l'isolation sera élevée.

$\lambda = \text{Kcal/m.h.}^{\circ}\text{C}$	K =	1,25	1,00	0,83	0,62	0,50	0,41	0,35
Plaques de liège expansé pur	$\lambda = 0.033$	26 mm	33 mm	39 mm	53 mm	66 mm	80 mm	94 mm
Polystyrène expansé 25 kg	$\lambda = 0.034$	27 mm	34 mm	40 mm	54 mm	67 mm	81 mm	95 mm
Polystyrène expansé 15 kg	$\lambda = 0,036$	29 mm	36 mm	43 mm	57 mm	72 mm	86 mm	100 mm
Fibres minérales	$\lambda = 0.035$	28 mm	35 mm	42 mm	56 mm	70 mm	84 mm	98 mm
Phénolite	$\lambda = 0.038$	30 mm	38 mm	45 mm	60 mm	76 mm	91 mm	106 mm
Laine de verre	$\lambda = 0.043$	34 mm	43 mm	52 mm	69 mm	86 mm	105 mm	123 mm
Copeaux de bois agglomérés	$\lambda = 0,050$	40 mm	50 mm	60 mm	80 mm	100 mm	120 mm	140 mm
Perlite	$\lambda = 0.050$	40 mm	50 mm	60 mm	80 mm	100 mm	120 mm	140 mm
Vermiculite	$\lambda = 0,090$	72 mm	90 mm	108 mm	144 mm	180 mm	216 mm	252 mm

Les plaques de liège ont une dimension standard de 1000 mm x 500 mm et peuvent éventuellement être obtenues avec rainure. Cette rainure facilite la pose dans le creux et réduit la perte de chaleur par des ponts thermiques (plus de coutures entre les panneaux).

La résistance à la chaleur ou R (m^2K/W) indique le pouvoir isolant thermique d'une couche de matériau. L'épaisseur du matériau (en mètre) est divisée par la valeur λ . Plus la valeur R est élevée, plus le pouvoir isolant sera élevé.

Le coefficient global de transmission thermique U est la valeur inverse à la somme des différentes valeurs R composantes. Plus le coefficient global de transmission thermique est faible, plus le pouvoir isolant sera élevé.

Dans le tableau ci-dessous, nous sommes partis d'une valeur λ (à 20°C) de 0,040 W/m.K pour le calcul de la valeur U et la valeur R.

Epaisseur	Plaques/colis	m² par colis	R (m ² K/W)	U (W/m².K)
10 mm	30	15	0,250	2,381
15 mm	20	10	0,375	1,835
20 mm	15	7,5	0,500	1,493
25 mm	12	6	0,625	1,258
30 mm	10	5	0,750	1,087
40 mm	8	4	1,000	0,855
50 mm	6	3	1,250	0,704
60 mm	5	2,5	1,500	0,599
80 mm	4	2	2,000	0,461
100 mm	3	1,5	2,500	0,375
120 mm	2	1	3,000	0,315

Le liège ne brûle pas de façon autonome et présente donc une propriété ignifuge (catégorie B2 selon DIN 4102). Étant donné que le liège est un produit naturel, sa combustion ne dégage pas de chlorures, de cyanures ou d'autres gaz toxiques.

Le liège présente un coefficient de vieillissement extrêmement favorable. Cela signifie que la valeur d'isolation du liège ne faiblit quasi pas avec le temps, contrairement aux différentes alternatives.

Le liège est naturellement hydrofuge. Par conséquent, la valeur d'isolation ou la conductivité thermique ne peut pas augmenter parce que le matériau est mouillé et le matériau est imputrescible sous l'effet de l'humidité et d'une mauvaise ventilation.

Les plaques de liège constituent également une isolation acoustique. La vitesse du son ralentit considérablement dans le liège, ce qui affaiblit les bruits ambiants. La vitesse du son dans le liège est de 450 m/sec., alors que dans le béton armé, cette vitesse s'élève à 2500-2800 m/sec. Ceci fait que le liège améliore le son et est un produit agréable à l'oreille.

Dans un espace fermé, le son se réfléchit sur les surfaces dures (fenêtres, murs, plafonds, sols). Il est conseillé de revêtir de liège les surfaces opposées, parce que ce matériau absorbe les vibrations sonores et empêche ainsi le reflet du son. Cet effet absorbant veille également à ce que le son est absorbé avant qu'il n'atteigne le mur et l'espace attenant. Le tableau ci-dessous illustre le pourcentage d'absorption des différents matériaux.

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Béton	2%	4%	5%	5%	10%	7%
Mur en brique	3%	3%	4%	4%	5%	7%
Stuc	2%	3%	3%	4%	5%	4%
Verre ordinaire	35%	25%	18%	12%	7%	4%
Sol en bois	4%	5%	6%	7%	6%	7%
Moquette sur parquet	20%	25%	30%	30%	40%	45%
Multiplex 5mm revêtement mural	14%	35%	55%	72%	70%	6%
Personne adulte (unités d'absorption)	20%	43%	50%	50%	55%	50%
Liège	10%	10%	33%	60%	34%	49%

Pour une isolation sonore spécifique, il est conseillé de faire des combinaisons de matériaux différents parce qu'il n'existe aucun matériau qui isole les fréquences faibles et élevées. Le liège présente par ailleurs les propriétés suivantes:

Densité des plaques	environ 120 Kgs/m³		
Densité des granulés	environ 100 Kgs/m³		
Résistance à la traction normale au plan de la plaque	0,94 Kgs/cm ²		
Résistance à la flexion	1,8 Kgs/m²		
Résistance à la compression	0,2 Kgs/cm²		
Limite d'élasticité	1 Kgs/cm ²		
Chaleur spécifique	1,67 KJ/Kgs°C		
Résistance à la diffusion de la vapeur d'eau	U5-30		
Température d'utilisation	-200°C à 130°C		
Rigidité dynamique (par 50 mm d'épaisseur	126 N/cm³		
Module d'élasticité	5 N/mm²		
Conductibilité à la vapeur	0,017 à 0,003 g/ mh mm de section		
Coefficient de dilatation thermique (20°C)	25 à 50 x 10 ⁻⁶		
Ne se désagrège pas dans l'eau bouillante	test de 3 heures		